

Unit-v

Non-Object-Oriented Languages J.REXY Dept Of CS

1. The programmer using ______ to map object-oriented language.

ANS: a non object oriented language

2. The Mapping object-oriented concepts implemented by using _____Steps.

ANS: 8

3. The ______ language is to allow the important Object –Oriented concepts implementations.

ANS: C language

4. The c pointer mechanism and _____ memory allocation also assist the implementation.

ANS: run-time

5. Ada supports data abstraction and discrete objects but doesn't support

ANS: inheritance

6. The main obstacles to a straightforward mapping come from ______ and lack of procedure pointers.

ANS: Ada's rigid typing system

7. An object oriented design constructed by using the <u>methodology</u>. **ANS:** OMT methodology 8. — is still widely used for numeric applications **ANS:** Fortran 9. _____ and design can be used profitably, but you have to translate data structures into arrays. **ANS:** object-oriented analysis 10. The Fortran programmer must manually translate many constructs that would be supported directly by ANS: C or Ada 11. The Fortran programs can be considered computational _____ and the non-Fortran programs can manage the overall systems. **ANS:** utilities _____ 12. Each attribute in a class becomes an in the record. **ANS:** element 13. Each attribute has a declared type, which can be a _____ type, such as integer, real or character.

ANS: primitive

14. An object has _____ and identity. **ANS:** state 15. _____ that identifies an object must be implemented as sharable reference. **ANS:** A variable 16. _____ can be implemented as a memory address or an array index. **ANS:** A reference 17. Each class in the design becomes **ANS:** c structure. 18. Each attribute defined in the class becomes a ______ of c structure. **ANS:** field 19. Ada code for a class is similar to the ANS: C code 20. Ada uses a _____ type.

ANS: record

21. In Ada, an object reference, or pointer can be represented by an access type. So type window is ______ Window Record.

ANS: access

22. — has no user-defined data structure except the array.

ANS: Fortran

23. A ________ is represented as an implicit group of arrays, one of the each attribute in the class.

ANS: class

24.____ does not support dynamic memory allocation.

ANS: Fortran

25. The programmer must maintain a ______ of the number of objects of a given class that have been allocated.

ANS: counter

26. Fortran compiler that allows identifier names as ______ or more characters.

ANS: 32

27. In object-oriented language every method has one argument that is ______ self argument.

ANS: implicit

28. In Non-object –oriented language the argument must be made

ANS: explicit

ANS: compilers

30. Access to the same ______ concurrently from the different tasks is likely to cause inconsistencies.

ANS: object

31. Objects can be allocated statically, dynamically or on a

ANS: stack

ANS: allocated

33. Storage for _____ allocated objects is requested explicitly by special operators. **ANS:** dynamically 34. Global objects can be declared as ______ structure variables In C. ANS: top –level 35. _____ can be allocated as constant access types in Ada. **ANS:** Global objects **36.** In Fortran a programmer ______ allocates new objects from predefined arrays. **ANS:** explicitly **37.** Many applications do not require inheritance. That is called ______ **ANS:** Avoid it embed the declaration for the super class as the 38. To handle first part of each subclass declaration. **ANS:** single inheritance _____ 39 Ada's can be used to implement single inheritance. **ANS:** variant records

40. Each ______ contains a discriminant, which is component to the alternative record. ANS: record

41. If a class has _____ they can also be stored in the class descriptor as additional field.

ANS: class attributes

42. Most language do not explicitly support _____

ANS: concurrency.

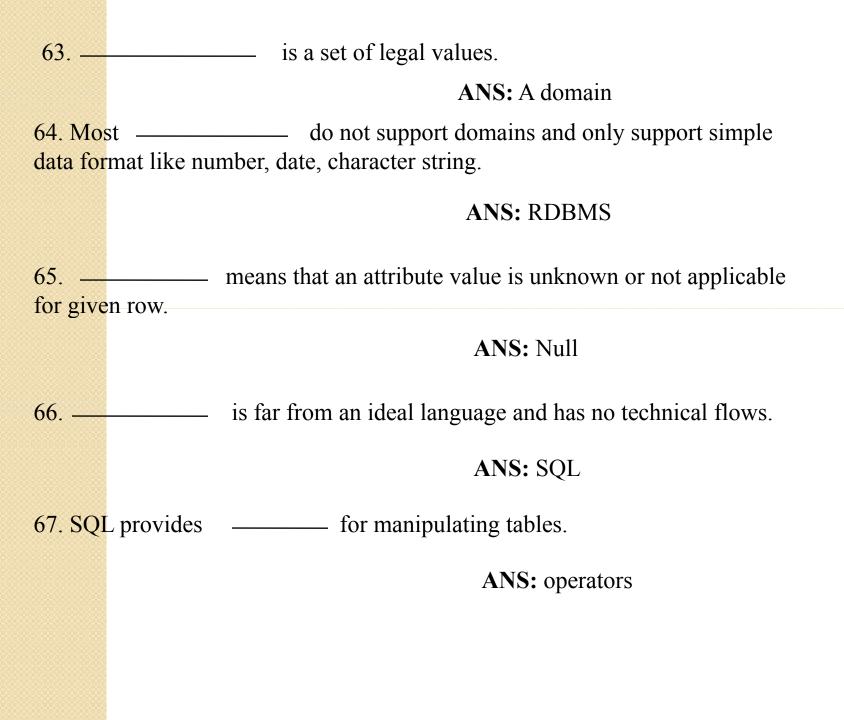
43. _______ of data representation and method implementation is one of the major themes of object-oriented programming.

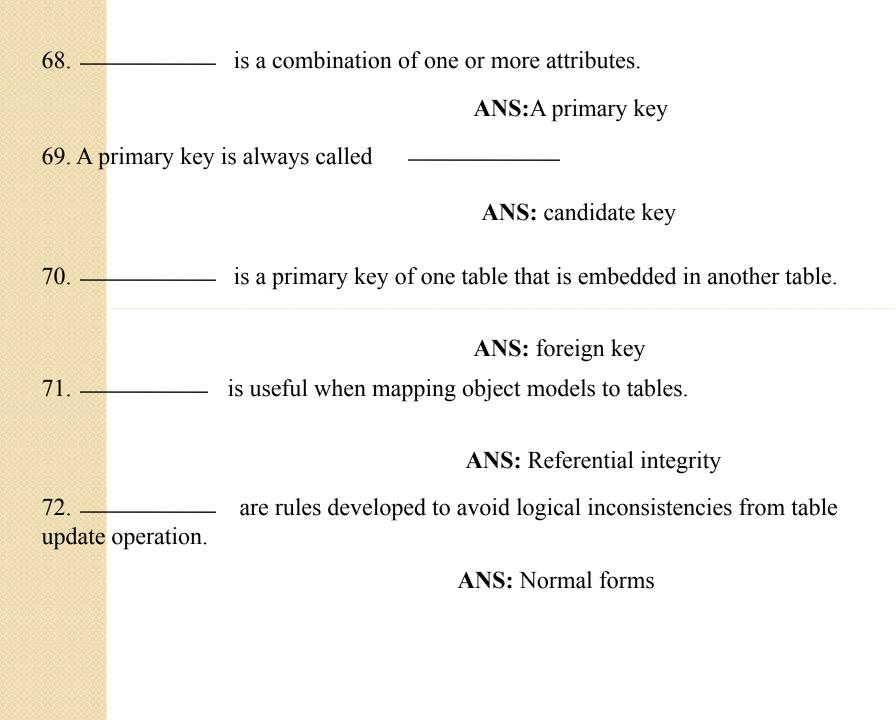
ANS: Encapsulation

44. The methods for each class into a separate file is called ______

ANS: Package

45. Classes should access an object only by its ————value.


ANS: index


Relational Databases

46. _____ System is a computer program to manage the data. **ANS:** Data Base Management 47. The repository of data is called ______ and is stored in one or more files. **ANS:** a database 48. _______ is used to protect the database from hardware crashes, disk media failures and some user errors. ANS: Crash recovery 49. Multiple users can access the database at same time is called ______ between users. **ANS:** sharing 50. _____ can be used to protect the data from unauthorized read or write access. **ANS:** Security

51. The most important and difficult task for	or many database applications is the
	ANS: database design
52. A database design is often referred as a	ANS: data model or schema
53. In general there are two approaches in	design.
	ANS: database
54. The first approach is to the application and synthesize groups of a	1
	ANS: attribute design
55. The second approach ismeaningful to the application .	— is discover entities that are
	ANS: entity driven
56. Each external schema is a	— from the perspective of a single
application.	ANS: database design

57. The conceptual schema is database design from the perspective of an
ANS: enterprise.
58. The relational data model was invented by
ANS: E.F.Codd 59. A RDBMS has major parts.
ANS: three
60. A logically appears as collection of tables.
ANS: relational database
61. Tables have a specific number of and an arbitrary number of rows.
ANS: columns
62. The columns of the table called and rows called tuples.
ANS: attribute

73. Each normal prohibits a form of ________ in table organization. **ANS:** redundancy 74. There are ______ levels of normal form. **ANS:** multiple repeating group. **ANS:** first normal form

76. A table is in second normal form when its satisfies first normal form and each row has a

ANS: primary key

77. A table is in third normal form when its satisfies ______ and each nonprimary key attribute directly depend on the primary key.

ANS: second normal form

78. A _______ is a virtual table that is dynamically computed as needed. **ANS:** view 79. A view does not ______ exist but is derived from one or more underlying tables. **ANS:** physically 80. In ______ first you should formulate object models for the external and conceptual schema. **ANS:** schema architecture 81. Conceptual tables convert to **ANS:** internal schema. 82. ____ consists of many classes, associations, generalizations and attributes. **ANS:** object model

83. Each 1	table model consists of many — tables.
	ANS: ideal
84	rules apply equally to the external and conceptual
	ANS: The mapping
85	is the example of primary key.
	ANS: ID
86. IDs pi	a mechanism for referencing objects.
	ANS: uniform
87. The of vertically.	bjects in amay be partitioned horizontally and/or
	ANS: class
88. Many	RDBS do not semantically support
	ANS: primary keys.

89. A table for each class participating in the _____ even for a class that may be trivial. **ANS:** EXODUS 90. Mapping ______ table to tables is used to map the super class and subclasses. **ANS:** ternary association 91. Another mapping object model is used to store <entity-name, key, _____ value> **ANS:** attribute-name 92. An explicit goal of advanced ______ is to make a few changes as possible to the relational model. **ANS:** RDBMS 93. _____ is one example of the advanced approach **ANS:** POSTGERS _____ is a prototype at the university of Wisconsin. 94. ____ **ANS:** generalization

Object Diagram Compiler

95. _____ provide a natural application for the OMT methodology. **ANS:** compilers 96. The compiler is a ______ that accepts an object diagram as input and produces relational DBMS schema as output. **ANS:** batch program 97. The list of parts chosen by a manufacturer to build a product is called **ANS:** a bill-of-material(BOM) 98. ______ is a tree of direct and indirect parts that compose an assembly. **ANS:** A BOM 99. The new BOM configuration system has a subsystem is called the **ANS:** Object Diagram Compiler.

100. In ______ the Object Diagram Compiler is to translate BOM object diagrams into database commands check for input errors.

ANS: problem statement

101. The compiler must read an ASCII description of a BOM object diagram produced by a general purpose

ANS: graphics editor

102. _____ editor must be geometric -shape-based and not pixel based.

ANS: Graphics

103. The compiler must produce a series of _____ commands.

ANS: database

104. The ______ stores its output in a data dictionary.

ANS: Object Diagram Compiler

105. The compiler must detect but need not correct the errors.
ANS: input errors
106 is the first step to solving the problem.
ANS: Analysis
107. Each ellipse represents a pass.
ANS: compiler
108 model regards an object diagram as simply a picture.
ANS: The geometry
109 is a single line of text that may be placed anywhere on page.
ANS: A Textline

110. — describes text size and special features such as italics, bold, underlying. **ANS:** Font 111. The geometry model includes in ______ for use in error messages. **ANS:** page number 112. Every class and association in the connection model is the output of one or more _____ processes. **ANS:** functional model 113. _____ block is associated with two textiles as mower number and mower width. **ANS:** The Lawn-mower 114. ABOM — has many class and association table. **ANS:** database

115. The system architecture for the _____ was straightforward and directly follows from the overall functional model.

ANS: Object Diagram Compiler

116. The advantage of ______ is increased information hiding which simplifies debugging, extension and porting.

ANS: a closed architecture

117. The disadvantage of a closed architecture is _____

ANS: loss of efficiency

118. The first pass reads the ______ contains a BOM diagram and loads the geometry model.

ANS: ASCII file

119. _____ may access points through the array of points stored in the points attribute.

ANS: A polygon object

120. ______ is an in house Object-Oriented programming language that is implemented on top of C.

ANS: DSM

121. _______ is presently being used for several BOM generation application.

ANS: The compiler

122. The compiler runs fast compiling ______ lines per minute.

ANS: 5000

THANK YOU